Research News Highlight

New Clues Help Explain Why PFAS Chemicals Resist Remediation

Research led by Konstantinos Kostarelos of UH Energy suggests why PFAS, known as “forever chemicals” because they can persist in the environment for decades, are so difficult to permanently remove and offers new avenues for better remediation practices.

Work Suggests New Avenues for Cleaning Up These ‘Forever Chemicals’

 

The synthetic chemicals known as PFAS, short for perfluoroalkyl and polyfluoroalkyl substances, are found in soil and groundwater where they have accumulated, posing risks to human health ranging from respiratory problems to cancer.

Tapping the Brain to Boost Stroke Rehabilitation

A clinical trial found that stroke survivors gained clinically significant arm movement and control by using an external robotic device powered by the patients’ own brains.
Clinical Trial Suggests Brain-Machine Interface Coupled with Robot Offers Increased Benefits for Stroke Survivors

Stroke survivors who had ceased to benefit from conventional rehabilitation gained clinically significant arm movement and control by using an external robotic device powered by the patients’ own brains.

How Do Snakes ‘See’ in the Dark? Researchers Have an Answer

Research led by Pradeep Sharma, chairman of the Department of Mechanical Engineering at the University of Houston, offers an explanation for how some species of snake convert the heat from organisms that are warmer than their ambient surroundings into electrical signals, allowing them to “see” in the dark.

Certain species of snake – think pit vipers, boa constrictors and pythons, among others – are able to find and capture prey with uncanny accuracy, even in total darkness. Now scientists have discovered how these creatures are able to convert the heat from organisms that are warmer than their ambient surroundings into electrical signals, allowing them to “see” in the dark.

New Technology Could Improve LASIK Surgery, Eye Disease Detection

Dr. Kirill Larin, University of Houston professor of biomedical engineering, is creating new technology to measure the elasticity of the cornea.

UH Professor to Create Ultrafast 3D Clinical Imaging System

LASIK eye surgery – a laser reshaping of the cornea to improve vision – is one of the most popular elective surgeries in the United States, and a University of Houston professor of biomedical engineering intends to improve upon it by giving surgeons more information about the cornea before they begin.  

University of Houston Partners with AuraVax Therapeutics on COVID-19 Vaccine

Navin Varadarajan, M.D. Anderson Professor of Chemical and Biomolecular Engineering, has created a nasal vaccine for COVID-19 and a company to market it in partnership with the University of Houston.

The University of Houston has entered into an exclusive license option agreement with AuraVax Therapeutics Inc., a Houston, TX based biotech company developing novel vaccines to help patients defeat debilitating respiratory diseases such as COVID-19. Under terms of the agreement, AuraVax has the option to exclusively license a new intranasal COVID-19 vaccine technology developed by Dr. Navin Varadarajan, M.D. Anderson Professor of Chemical and Biomolecular Engineering.

UH, Houston Methodist using AI to identify breast cancer

Dr. Hien Van Nguyen, an Assistant Professor of Electrical and Computer Engineering at the University of Houston's Cullen College of Engineering, has received a grant to use AI with breast cancer diagnoses.

Dr. Hien Van Nguyen, an Assistant Professor of Electrical and Computer Engineering at the University of Houston's Cullen College of Engineering, received an R01 sub-award of $319,285 for his grant, “Convergent AI for Precise Breast Cancer Risk Assessment,” from the National Cancer Institute, National Institutes of Health.

Nearing a Treatment for Farsightedness

Kirill Larin, professor of biomedical engineering, has received $3 million from the National Eye Institute to create a new technology capable of precise noninvasive and depth-resolved quantitative measurements of the lens mechanical properties in a clinical setting.

UH Professor Developing New Technology to Detect Lens Elasticity

A biomedical researcher at the University of Houston's Cullen College of Engineering is developing new technology that will measure the stiffness of the lens in the eye, which is likely associated with presbyopia, or farsightedness, the inevitable and age-related loss of the ability to focus on nearby objects.  

Rapid tests for COVID-19 now, other diseases later the goal for Kourentzi

Dr. Katerina Kourentzi, Research Associate Professor of Chemical and Biomolecular Engineering, is developing a saliva-based lateral flow assay rapid test for COVID-19 detection. The test strips for the assay are designed using the Biodot XYZ3060 Dispensing Platform.

The development of point-of-care tests – and as of late, for COVID-19 – has been the primary focus of Dr. Katerina Kourentzi, Research Associate Professor of Chemical and Biomolecular Engineering in the William A. Brookshire Department of Chemical and Biomolecular Engineering at the University of Houston's Cullen College of Engineering.

Grabow heading UH portion of team for $2M NSF Distributed Chemical Manufacturing Project

Dr. Lars C. Grabow, Dan Luss Professor of Chemical and Biomolecular Engineering at the Cullen College of Engineering, received a NSF grant to continue studies on small-scale reactors and catalysts.

A partnership between researchers at the University of Virginia and the University of Houston has continued to flourish, and expanded to another professor at the Worcester Polytechnic Institute, after the National Science Foundation chose their Emerging Frontiers in Research and Innovation (EFRI) proposal – the development of dynamically operated, smaller scale reactors that can process distributed feedstock – for a $2 million award.

More, Faster, Better – UH Unveils New Supercomputer

The Hewlett Packard Enterprise Data Science Institute at the University of Houston has partnered with the UH Cullen College of Engineering to add a third supercomputer to its stable of high-performance computers.

$2.5 Million Computing Cluster Will Allow University to Better Serve the Research Community

 

The Hewlett Packard Enterprise Data Science Institute at the University of Houston has partnered with the UH Cullen College of Engineering to add a third supercomputer to its stable of high-performance computers, dramatically expanding the computational power available to researchers at the University of Houston and across the UH System.

‘Drawn-on-Skin’ Electronics Offer Breakthrough in Wearable Monitors

Cunjiang Yu, Bill D. Cook Associate Professor of Mechanical Engineering, led a team reporting a new form of electronics known as “drawn-on-skin electronics,” which allows multifunctional sensors and circuits to be drawn on the skin with an ink pen.

A team of researchers led by Dr. Cunjiang Yu, Bill D. Cook Associate Professor of Mechanical Engineering at the University of Houston, has developed a new form of electronics known as “drawn-on-skin electronics,” allowing multifunctional sensors and circuits to be drawn on the skin with an ink pen.

If Cement Could Talk - Startup based on UH Technology to make world safer

Ody De La Paz, co-founder and CEO of Sensytec.

Deadly explosions on offshore oil platforms. Collapsing bridges. Gaping potholes large enough to swallow a car.

Cement is the most widely used construction material in the world, but there hasn’t been an easy-to-use and reliable way to ensure its structural integrity. A revolutionary technology from a lab at the University of Houston is changing that and could help to lower the risks. 

A Roadmap to Better Multivalent Batteries

Researchers report that while magnesium and other multivalent metals show promise for high-density energy storage, but a number of obstacles remain. Photo: Getty Images.

Lithium-ion batteries are recognized for their high energy density in everything from mobile phones to laptop computers and electric vehicles, but as the need for grid-scale energy storage and other applications becomes more pressing, researchers have sought less expensive and more readily available alternatives to lithium.

Pages