Research News Highlight

New research method from Faghih, Amin allows more reliable brain information inference using electrodermal activity

A new paper from Rose Faghih, Ph.D., Assistant Professor of Electrical and Computer Engineering and the Director of the Computational Medicine Laboratory, and her doctoral student Rafiul Amin describes how they have developed a novel inference engine to obtain brain information from raw electrodermal activity (EDA) recordings, eradicating previous challenges from earlier methods.

A new paper from Rose Faghih, Ph.D., Assistant Professor of Electrical and Computer Engineering and the Director of the Computational Medicine Laboratory, and her doctoral student Rafiul Amin describes how they have developed a novel inference engine to obtain brain information from raw electrodermal activity (EDA) recordings, eradicating previous challenges from earlier methods.   

Examining the One-Two Punch of Malaria Drugs

Peter Vekilov, Moores Professor of Chemical and Biomolecular Engineering at the University of Houston, is examining why the two drugs that most often cure malaria can also fail because they tend to fight each other.

When a mosquito begins to nibble on you, it is not merely feeding on your blood, it is also injecting its saliva into your skin. If that saliva happens to be full of parasites carrying malaria or other diseases from its last victim, then most likely you will become infected, too. 

Improved Catalyst May Translate to Petrochemical Production Gains

Jeffrey Rimer is the Abraham E. Dukler Professor at the University of Houston Cullen College of Engineering.

Aromatics are major building blocks of polymers, or plastics, that turn up as everything from PET bottles for water to breathable, wrinkle-resistant polyester clothing. These petrochemicals comprise a specialized, value-added sector of the energy industry. The process for refining crude oil into useful aromatic streams for derivative use often involves the usage of a catalyst to facilitate chemical reactions.

With Lithium in High Demand, UH Researcher Examines New Sources

Kyung Jae Lee, assistant professor of petroleum engineering, has received a Faculty Early Career Development (CAREER) Award from the National Science Foundation for $508,722 to contribute to the enhancement and diversification of the domestic supply of lithium.

As the energy transition motors on to reduce the use of fossil fuels, the need for lithium has grown exponentially over the past decade because lithium-ion energy storage (i.e., lithium-ion batteries) powers both electric vehicles and renewable solar and wind electricity generation.  

New Clues Help Explain Why PFAS Chemicals Resist Remediation

Research led by Konstantinos Kostarelos of UH Energy suggests why PFAS, known as “forever chemicals” because they can persist in the environment for decades, are so difficult to permanently remove and offers new avenues for better remediation practices.

Work Suggests New Avenues for Cleaning Up These ‘Forever Chemicals’

 

The synthetic chemicals known as PFAS, short for perfluoroalkyl and polyfluoroalkyl substances, are found in soil and groundwater where they have accumulated, posing risks to human health ranging from respiratory problems to cancer.

Tapping the Brain to Boost Stroke Rehabilitation

A clinical trial found that stroke survivors gained clinically significant arm movement and control by using an external robotic device powered by the patients’ own brains.
Clinical Trial Suggests Brain-Machine Interface Coupled with Robot Offers Increased Benefits for Stroke Survivors

Stroke survivors who had ceased to benefit from conventional rehabilitation gained clinically significant arm movement and control by using an external robotic device powered by the patients’ own brains.

How Do Snakes ‘See’ in the Dark? Researchers Have an Answer

Research led by Pradeep Sharma, chairman of the Department of Mechanical Engineering at the University of Houston, offers an explanation for how some species of snake convert the heat from organisms that are warmer than their ambient surroundings into electrical signals, allowing them to “see” in the dark.

Certain species of snake – think pit vipers, boa constrictors and pythons, among others – are able to find and capture prey with uncanny accuracy, even in total darkness. Now scientists have discovered how these creatures are able to convert the heat from organisms that are warmer than their ambient surroundings into electrical signals, allowing them to “see” in the dark.

New Technology Could Improve LASIK Surgery, Eye Disease Detection

Dr. Kirill Larin, University of Houston professor of biomedical engineering, is creating new technology to measure the elasticity of the cornea.

UH Professor to Create Ultrafast 3D Clinical Imaging System

LASIK eye surgery – a laser reshaping of the cornea to improve vision – is one of the most popular elective surgeries in the United States, and a University of Houston professor of biomedical engineering intends to improve upon it by giving surgeons more information about the cornea before they begin.  

University of Houston Partners with AuraVax Therapeutics on COVID-19 Vaccine

Navin Varadarajan, M.D. Anderson Professor of Chemical and Biomolecular Engineering, has created a nasal vaccine for COVID-19 and a company to market it in partnership with the University of Houston.

The University of Houston has entered into an exclusive license option agreement with AuraVax Therapeutics Inc., a Houston, TX based biotech company developing novel vaccines to help patients defeat debilitating respiratory diseases such as COVID-19. Under terms of the agreement, AuraVax has the option to exclusively license a new intranasal COVID-19 vaccine technology developed by Dr. Navin Varadarajan, M.D. Anderson Professor of Chemical and Biomolecular Engineering.

UH, Houston Methodist using AI to identify breast cancer

Dr. Hien Van Nguyen, an Assistant Professor of Electrical and Computer Engineering at the University of Houston's Cullen College of Engineering, has received a grant to use AI with breast cancer diagnoses.

Dr. Hien Van Nguyen, an Assistant Professor of Electrical and Computer Engineering at the University of Houston's Cullen College of Engineering, received an R01 sub-award of $319,285 for his grant, “Convergent AI for Precise Breast Cancer Risk Assessment,” from the National Cancer Institute, National Institutes of Health.

Nearing a Treatment for Farsightedness

Kirill Larin, professor of biomedical engineering, has received $3 million from the National Eye Institute to create a new technology capable of precise noninvasive and depth-resolved quantitative measurements of the lens mechanical properties in a clinical setting.

UH Professor Developing New Technology to Detect Lens Elasticity

A biomedical researcher at the University of Houston's Cullen College of Engineering is developing new technology that will measure the stiffness of the lens in the eye, which is likely associated with presbyopia, or farsightedness, the inevitable and age-related loss of the ability to focus on nearby objects.  

Rapid tests for COVID-19 now, other diseases later the goal for Kourentzi

Dr. Katerina Kourentzi, Research Associate Professor of Chemical and Biomolecular Engineering, is developing a saliva-based lateral flow assay rapid test for COVID-19 detection. The test strips for the assay are designed using the Biodot XYZ3060 Dispensing Platform.

The development of point-of-care tests – and as of late, for COVID-19 – has been the primary focus of Dr. Katerina Kourentzi, Research Associate Professor of Chemical and Biomolecular Engineering in the William A. Brookshire Department of Chemical and Biomolecular Engineering at the University of Houston's Cullen College of Engineering.

Grabow heading UH portion of team for $2M NSF Distributed Chemical Manufacturing Project

Dr. Lars C. Grabow, Dan Luss Professor of Chemical and Biomolecular Engineering at the Cullen College of Engineering, received a NSF grant to continue studies on small-scale reactors and catalysts.

A partnership between researchers at the University of Virginia and the University of Houston has continued to flourish, and expanded to another professor at the Worcester Polytechnic Institute, after the National Science Foundation chose their Emerging Frontiers in Research and Innovation (EFRI) proposal – the development of dynamically operated, smaller scale reactors that can process distributed feedstock – for a $2 million award.

Pages