News

Continuously Tracking Fear Response Could Improve Mental Health Treatment

By: 

Laurie Fickman 713-743-8454
 Assistant professor of electrical and computer engineering Rose Faghih has developed a method to track the fear response from sweat and heart rate together .
Assistant professor of electrical and computer engineering Rose Faghih has developed a method to track the fear response from sweat and heart rate together .

Assistant professor of electrical and computer engineering Rose Faghih is not afraid of fear. If continuously monitored, she sees it as a tool to improve mental health treatment. So, she and doctoral student Dilranjan Wickramasuriya in the University of Houston Computational Medicine Lab (CML), who have previously tracked the fear response through sweat, or skin conductance, have now illustrated that the sympathetic nervous system’s activation level can be tracked continuously. 

“We developed a mixed filter algorithm to continuously track a person’s level of sympathetic nervous system activation using skin conductance and heart rate measurements,” reports Faghih in the journal PLOS One. “This level of sympathetic activation is closely tied to what is known as emotional arousal or sympathetic arousal.” 

The sympathetic nervous system controls what is commonly known as the “fight or flight” response, activated when the body is confronted by fear. Sympathetic nerves are a primary part of the response, and their arousal propels a person to action. When the sympathetic nervous system is activated, the heart starts pumping blood faster to send more oxygen to muscles. Then, tiny bursts of sweat released by the body cause a cooling effect. 

“Using measurements of the variations in the conductivity of the skin and the rate at which the heart beats, and by developing mathematical models that govern these relationships, CML researchers have illustrated that the sympathetic nervous system’s activation level can be tracked continuously,” reports Faghih. 

The ability to track arousal from skin conductance and heart rate together is an important precursor to the development of wearable monitors that could aid in patient care. The algorithm could be embedded in a wearable electronic device to monitor a patient diagnosed with a fear or anxiety disorder. 

“Anxiety and trauma-related disorders are often accompanied by a heightened sympathetic tone and these methods could find clinical applications in remote monitoring for therapeutic purposes,” she said. 

Faculty: 

Department/Academic Programs: 

Related News Stories

ECE professor emeritus elected to NAE

Dr. Donald R. Wilton, a professor emeritus of the Electrical and Computer Engineering Department at the University of Houston’s Cullen College of Engineering, has been elected to the 2021 Class of the National Academy of Engineering.

Dr. Donald R. Wilton, a professor emeritus of the Electrical and Computer Engineering Department at the University of Houston’s Cullen College of Engineering, has added another impressive honor to his career of distinction with his election to the 2021 Class of the National Academy of Engineering.

UH alum helping with vaccine labeling project

Austin Dodge, a December 2017 graduate of the Electrical and Computer Engineering Department, is now working at Weiler on industrial labeling of new COVID-19 vaccine labels.

A graduate of the University of Houston's Cullen College of Engineering is a member of the team at Weiler Labeling Systems providing customized labels for the new COVID-19 vaccine labels.

Austin Dodge, a December 2017 graduate of the Electrical and Computer Engineering Department, said this sort of work was what she had in mind when she graduated.