News

Researchers Seek to Improve Quality Control for Nanomanufacturing

By: 

Jeannie Kever
Venkat Selvamanickam, MD Anderson Chair Professor of Mechanical Engineering at the University of Houston
Venkat Selvamanickam, MD Anderson Chair Professor of Mechanical Engineering at the University of Houston

New Monitoring Tool Would Be Able To Detect Imperfections Almost Instantaneously

Researchers from the University of Houston are developing a new quality control tool for continuous nanomanufacturing, a key step in moving nanodevices from the lab to the real world.

“Nanomanufacturing sounds great, but it really has to be scalable,” said Venkat Selvamanickam, MD Anderson Chair Professor of Mechanical Engineering. “You have to be able to control the quality.”

Selvamanickam is working with Nanomanufacturing Systems for mobile Computing and Energy Technologies (NASCENT), a multi-institution partnership led by the University of Texas at Austin, to develop the new tool, which will adapt Raman Spectroscopy and X-ray Diffraction for use with roll-to-roll continuous manufacturing processes.

The work will be done under the auspices of the UH Advanced Manufacturing Institute; UH will receive about $340,000 from the National Science Foundation for the project.

One of the world’s leading experts on manufacturing superconductors, Selvamanickam oversees manufacturing activity at the University’s Energy Research Park, including the advanced manufacturing of high-performance superconductor wires for next-generation electric machines. He is also director of the Applied Research Hub at the Texas Center for Superconductivity at UH and manages the Advanced Manufacturing Institute, an umbrella organization designed to help researchers make the leap between discovery and commercialization.

NASCENT, an NSF-funded Engineering Research Center, addresses issues limiting high-volume nanomanufacturing. Selvamanickam said one critical problem is ensuring quality control during the manufacturing process, rather than waiting until the device or product has been produced to check for imperfections or other problems.

The goal is an innovative tool that can provide continuous monitoring as production rolls past. “The challenge is, can you detect imperfections at fast speed and good resolution?” Selvamanickam said. “You can’t be spending minutes examining the material, because the material is flying by at high speed.”

To work, the tool will have to detect imperfections within seconds or less.

Selvamanickam’s lab currently produces solar cells, flexible electronics and superconducting wires using roll-to-roll manufacturing, the same process NASCENT is pursuing.

While the tool initially will be tested on the manufacture of common semiconductors, including silicon and gallium-arsenide, Selvamanickam said it will then be adapted for additional materials.

Faculty: 

Department/Academic Programs: 

Centers/Programs: 

Tag: 

Related News Stories

Implantable Device Can Monitor and Treat Heart Disease

Cunjiang Yu, Bill D. Cook Associate Professor of Mechanical Engineering at UH, led a group of researchers that developed a cardiac patch made from fully rubbery electronics that can be placed directly on the heart to collect electrophysiological activity, temperature, heartbeat and other indicators, all at the same time.

Researchers Report Rubbery Bioelectronic Cardiac Patch

Pacemakers and other implantable cardiac devices used to monitor and treat arrhythmias and other heart problems have generally had one of two drawbacks – they are made with rigid materials that can’t move to accommodate a beating heart, or they are made from soft materials that can collect only a limited amount of information.

Mechanical Engineering earns #6 spot for value in College Factual 2021 ranking

College Factual has named the Mechanical Engineering program at the University of Houston’s Cullen College of Engineering as the sixth-best value school for the major.

The Mechanical Engineering program at the University of Houston’s Cullen College of Engineering ranked No. 6 in College Factual’s most recent rankings for the best value schools for majors.

According to statistics provided by College Factual, this puts the program in the top 5 percent of the country for Mechanical Engineering students seeking a bachelor’s degree. The school improved its ranking by nine slots from last year’s ranking of No. 15.