University of Houston Cullen College of Engineering


Researchers Seek to Improve Quality Control for Nanomanufacturing


Jeannie Kever
Venkat Selvamanickam, MD Anderson Chair Professor of Mechanical Engineering at the University of Houston
Venkat Selvamanickam, MD Anderson Chair Professor of Mechanical Engineering at the University of Houston

New Monitoring Tool Would Be Able To Detect Imperfections Almost Instantaneously

Researchers from the University of Houston are developing a new quality control tool for continuous nanomanufacturing, a key step in moving nanodevices from the lab to the real world.

“Nanomanufacturing sounds great, but it really has to be scalable,” said Venkat Selvamanickam, MD Anderson Chair Professor of Mechanical Engineering. “You have to be able to control the quality.”

Selvamanickam is working with Nanomanufacturing Systems for mobile Computing and Energy Technologies (NASCENT), a multi-institution partnership led by the University of Texas at Austin, to develop the new tool, which will adapt Raman Spectroscopy and X-ray Diffraction for use with roll-to-roll continuous manufacturing processes.

The work will be done under the auspices of the UH Advanced Manufacturing Institute; UH will receive about $340,000 from the National Science Foundation for the project.

One of the world’s leading experts on manufacturing superconductors, Selvamanickam oversees manufacturing activity at the University’s Energy Research Park, including the advanced manufacturing of high-performance superconductor wires for next-generation electric machines. He is also director of the Applied Research Hub at the Texas Center for Superconductivity at UH and manages the Advanced Manufacturing Institute, an umbrella organization designed to help researchers make the leap between discovery and commercialization.

NASCENT, an NSF-funded Engineering Research Center, addresses issues limiting high-volume nanomanufacturing. Selvamanickam said one critical problem is ensuring quality control during the manufacturing process, rather than waiting until the device or product has been produced to check for imperfections or other problems.

The goal is an innovative tool that can provide continuous monitoring as production rolls past. “The challenge is, can you detect imperfections at fast speed and good resolution?” Selvamanickam said. “You can’t be spending minutes examining the material, because the material is flying by at high speed.”

To work, the tool will have to detect imperfections within seconds or less.

Selvamanickam’s lab currently produces solar cells, flexible electronics and superconducting wires using roll-to-roll manufacturing, the same process NASCENT is pursuing.

While the tool initially will be tested on the manufacture of common semiconductors, including silicon and gallium-arsenide, Selvamanickam said it will then be adapted for additional materials.





Related News Stories

UH Researchers Forge Ahead With Low-Cost, High-Efficiency Solar Cell Device Development

Researchers have developed a better quality, high-efficiency gallium arsenide solar cells on low-cost metal foil.

An article citing improvements in research involving a new generation of flexible photovoltaic devices reported by the Selva Research Group at the UH Cullen College of Engineering was recently published in the journal Energy & Environmental Science. The article is titled “Flexible GaAs Solar cells on roll-to-roll processed epitaxial Ge films on metal foils: a route towards low-cost and high-performance III-V photovoltaics.”

Chemicals Giant INEOS To Visit With UH Engineering Students

At the University of Houston, the Tau Beta Pi -Texas Epsilon Chapter (TX-E) was established in 1962.

The UH chapter of Tau Beta Pi – Texas Epsilon (TBP) is hosting an information session with representatives of INEOS, the fourth largest global chemicals company, on Wednesday, February 27, in the Science and Research Building 1 on campus. The presenters will be Bob Sokol, chief financial officer of INEOS Oligomers and Oxide, and Fred Rulander, chief operating officer of INEOS Oxide North America.