Research News

Grabow engineering dynamic solutions for carbon fiber market

Acrylonitrile is the feedstock used to make carbon fiber, which is used in the manufacturing of an array of products, from vehicles and performance sports equipment to wind turbine blades and electronics.

Lars Grabow's Research to Bring Chemical Production and Manufacturing Together Could Revolutionize Numerous Chemical Processes

You may know little to nothing about the carbon fiber market, but products produced with carbon fibers are pervasive in your everyday life ... from bicycles and computer hardware to automobiles, apparel and medications.

Examining the One-Two Punch of Malaria Drugs

Peter Vekilov, Moores Professor of Chemical and Biomolecular Engineering at the University of Houston, is examining why the two drugs that most often cure malaria can also fail because they tend to fight each other.

When a mosquito begins to nibble on you, it is not merely feeding on your blood, it is also injecting its saliva into your skin. If that saliva happens to be full of parasites carrying malaria or other diseases from its last victim, then most likely you will become infected, too. 

Improved Catalyst May Translate to Petrochemical Production Gains

Jeffrey Rimer is the Abraham E. Dukler Professor at the University of Houston Cullen College of Engineering.

Aromatics are major building blocks of polymers, or plastics, that turn up as everything from PET bottles for water to breathable, wrinkle-resistant polyester clothing. These petrochemicals comprise a specialized, value-added sector of the energy industry. The process for refining crude oil into useful aromatic streams for derivative use often involves the usage of a catalyst to facilitate chemical reactions.

University of Houston Partners with AuraVax Therapeutics on COVID-19 Vaccine

Navin Varadarajan, M.D. Anderson Professor of Chemical and Biomolecular Engineering, has created a nasal vaccine for COVID-19 and a company to market it in partnership with the University of Houston.

The University of Houston has entered into an exclusive license option agreement with AuraVax Therapeutics Inc., a Houston, TX based biotech company developing novel vaccines to help patients defeat debilitating respiratory diseases such as COVID-19. Under terms of the agreement, AuraVax has the option to exclusively license a new intranasal COVID-19 vaccine technology developed by Dr. Navin Varadarajan, M.D. Anderson Professor of Chemical and Biomolecular Engineering.

Faster swimming bacteria could help with spills

Narendra Dewangan, a graduate student of Dr. Jacinta Conrad, has completed work with the Conrad Research Group on how faster swimming bacteria could be used to help with removal of pollutants.

A new paper and research from the Conrad Research Group of the Department of Chemical and Biomolecular Engineering at the University of Houston’s Cullen College of Engineering looks at how bacteria could be used to help with removal of pollutants, like in oil spills and wastewater treatment.

Rapid tests for COVID-19 now, other diseases later the goal for Kourentzi

Dr. Katerina Kourentzi, Research Associate Professor of Chemical and Biomolecular Engineering, is developing a saliva-based lateral flow assay rapid test for COVID-19 detection. The test strips for the assay are designed using the Biodot XYZ3060 Dispensing Platform.

The development of point-of-care tests – and as of late, for COVID-19 – has been the primary focus of Dr. Katerina Kourentzi, Research Associate Professor of Chemical and Biomolecular Engineering in the William A. Brookshire Department of Chemical and Biomolecular Engineering at the University of Houston's Cullen College of Engineering.

Grabow heading UH portion of team for $2M NSF Distributed Chemical Manufacturing Project

Dr. Lars C. Grabow, Dan Luss Professor of Chemical and Biomolecular Engineering at the Cullen College of Engineering, received a NSF grant to continue studies on small-scale reactors and catalysts.

A partnership between researchers at the University of Virginia and the University of Houston has continued to flourish, and expanded to another professor at the Worcester Polytechnic Institute, after the National Science Foundation chose their Emerging Frontiers in Research and Innovation (EFRI) proposal – the development of dynamically operated, smaller scale reactors that can process distributed feedstock – for a $2 million award.

Breaking Molecular Traffic Jams with Finned Nanoporous Materials

3D finned zeolite catalysts enhance molecule access to the interior of the particle (graphic created by J.C. Palmer).

Thousands of chemical processes used by the energy industry and for other applications rely on the high speed of catalytic reactions, but molecules frequently are hindered by molecular traffic jams that slow them down. Now an entirely new class of porous catalysts has been invented, using unique fins to speed up the chemistry by allowing molecules to skip the lines that limit the reaction. 

Showing Promise: UH Researchers Explore Care Options for COVID-19

UH engineering professor Navin Varadarajan (L) and pharmaceutics professor Xinli Liu (R) are collaborating on development and testing of a COVID-19 inhalation vaccine.

Not since the middle of the 20th century, amid the polio epidemic, have vaccines or drug treatment been so widely anticipated as those for COVID-19. In 1955 when the polio vaccine was licensed, the health outlook for millions of children improved and normal life resumed. Still, not all pandemics have found such resolution.

Rimer receives NSF grant for zeolite work

Dr. Jeffrey Rimer, the Abraham E. Dukler Professor of Chemical and Biomolecular Engineering, has received a $446,364 grant from the NSF to study zeolites.

The complexity and mystery of zeolites – porous aluminosilicate crystals – was what first attracted Dr. Jeffrey Rimer, the Abraham E. Dukler Professor of Chemical and Biomolecular Engineering, to his current field of research.

Researchers Take a Cue from Nature to Create Bulletproof Coatings

Alamgir Karim, Dow Chair Professor of chemical and biomolecular engineering, says the chitin project could lead to more environmentally friendly plastics and other polymers.

Shrimp, lobsters and mushrooms may not seem like great tools for the battlefield, but three engineers from the University of Houston are using chitin – a derivative of glucose found in the cellular walls of arthropods and fungi – and 3D printing techniques to produce high-impact multilayered coatings that can protect soldiers against bullets, lasers, toxic gas and other dangers.

Pages