News

UH Engineer Seeks to Learn More About Crystal Formation

By: 

Jeannie Kever
Jeremy Palmer, assistant professor of chemical and biomolecular engineering at the University of Houston, wins NSF CAREER Award.
Jeremy Palmer, assistant professor of chemical and biomolecular engineering at the University of Houston, wins NSF CAREER Award

NSF-Funded Work Holds Promise for Health Care, Energy, Other Fields

 

Crystal formation is key to fields as disparate as drug design, biomedical diagnostics and petrochemical production, but significant questions remain about how that formation begins in the presence of soft materials. A chemical engineer from the University of Houston has received a $500,000 CAREER award from the National Science Foundation to increase understanding of crystal nucleation within polymers and other soft materials.
Jeremy Palmer, assistant professor of chemical and biomolecular engineering, uses computational methods to study the early stages of crystal formation, before the process can be viewed experimentally.

The formation can take time, and small crystalline clusters that form within liquids don’t always grow into full-fledged crystals. Experiments show, however, that the presence of other materials such as polymers and proteins can change the likelihood of crystallization occurring. 

“We don’t fully understand how the presence of soft materials influences crystallization,” Palmer said. A better understanding and the ability to control the crystallization process could prove helpful in all sorts of areas, including biological systems, pharmaceutical formulations, water and wastewater treatment plants, he said.

Most soft materials – the category covers a range of possibilities, from biological tissues to polymers – inhibit nucleation; Palmer’s work will rely on a polymer matrix to learn more at the molecular level about how the materials inhibit or promote crystallization.

“If you understand the process, you could design a polymer matrix to help precipitate a compound,” a key to drug development, he said. In other cases, such as in processing biological tissues, stopping crystallization is important to avoid damaging the sample.

NSF CAREER awards are granted to highly promising junior faculty members who exemplify the role of teacher-scholars through “outstanding research, excellent education and the integration of education and research.” In addition to their research component, they also require educational outreach.

Palmer has proposed to continue his current outreach to students in kindergarten through high school, as well as to devise new outreach projects. He also will create a short course for graduate and undergraduate researchers addressing one of the hottest issues in science – whether findings by one research group can be reproduced by another.
The class will cover proper documentation and other steps to encourage reproducibility.

“It’s a huge issue,” he said. “Eighty percent of the work out there is not reproduced to the extent it should be.” That may be due to a relatively simple error – forgetting to include a step in the process, or making a typo in computer code – but it is key to significant research.

“If it can’t be reproduced, it’s not science,” Palmer said.

Faculty: 

Department: 

Related News Stories

Cullen College of Engineering posts new 6-Year graduation high mark

The six-year graduation rate for the Cullen College of Engineering is 71.2 percent for students that began in Fall 2014, the fourth year in a row it has increased.

The Cullen College of Engineering has set a new record for its six-year graduation rate, hitting a mark of 71.2 percent for students that began in Fall 2014, according to new information released by the department's Division of Undergraduate Programs and Student Success.

Researchers Take a Cue from Nature to Create Bulletproof Coatings

Alamgir Karim, Dow Chair Professor of chemical and biomolecular engineering, says the chitin project could lead to more environmentally friendly plastics and other polymers.

Shrimp, lobsters and mushrooms may not seem like great tools for the battlefield, but three engineers from the University of Houston are using chitin – a derivative of glucose found in the cellular walls of arthropods and fungi – and 3D printing techniques to produce high-impact multilayered coatings that can protect soldiers against bullets, lasers, toxic gas and other dangers.

Class of 2020 honored with virtual graduation celebration

Michelle Gale.

The fortitude of the Cullen College of Engineering's Class of 2020 was proudly celebrated by the university community on May 7, with a 90-minute virtual graduation celebration, featuring remarks from University of Houston leadership, a commencement speaker and most importantly, the graduating students.

Upcoming Events / Seminars