University of Houston Cullen College of Engineering


UH Engineer Seeks to Learn More About Crystal Formation


Jeannie Kever
Jeremy Palmer, assistant professor of chemical and biomolecular engineering at the University of Houston, wins NSF CAREER Award.
Jeremy Palmer, assistant professor of chemical and biomolecular engineering at the University of Houston, wins NSF CAREER Award

NSF-Funded Work Holds Promise for Health Care, Energy, Other Fields


Crystal formation is key to fields as disparate as drug design, biomedical diagnostics and petrochemical production, but significant questions remain about how that formation begins in the presence of soft materials. A chemical engineer from the University of Houston has received a $500,000 CAREER award from the National Science Foundation to increase understanding of crystal nucleation within polymers and other soft materials.
Jeremy Palmer, assistant professor of chemical and biomolecular engineering, uses computational methods to study the early stages of crystal formation, before the process can be viewed experimentally.

The formation can take time, and small crystalline clusters that form within liquids don’t always grow into full-fledged crystals. Experiments show, however, that the presence of other materials such as polymers and proteins can change the likelihood of crystallization occurring. 

“We don’t fully understand how the presence of soft materials influences crystallization,” Palmer said. A better understanding and the ability to control the crystallization process could prove helpful in all sorts of areas, including biological systems, pharmaceutical formulations, water and wastewater treatment plants, he said.

Most soft materials – the category covers a range of possibilities, from biological tissues to polymers – inhibit nucleation; Palmer’s work will rely on a polymer matrix to learn more at the molecular level about how the materials inhibit or promote crystallization.

“If you understand the process, you could design a polymer matrix to help precipitate a compound,” a key to drug development, he said. In other cases, such as in processing biological tissues, stopping crystallization is important to avoid damaging the sample.

NSF CAREER awards are granted to highly promising junior faculty members who exemplify the role of teacher-scholars through “outstanding research, excellent education and the integration of education and research.” In addition to their research component, they also require educational outreach.

Palmer has proposed to continue his current outreach to students in kindergarten through high school, as well as to devise new outreach projects. He also will create a short course for graduate and undergraduate researchers addressing one of the hottest issues in science – whether findings by one research group can be reproduced by another.
The class will cover proper documentation and other steps to encourage reproducibility.

“It’s a huge issue,” he said. “Eighty percent of the work out there is not reproduced to the extent it should be.” That may be due to a relatively simple error – forgetting to include a step in the process, or making a typo in computer code – but it is key to significant research.

“If it can’t be reproduced, it’s not science,” Palmer said.



Related News Stories

Distinguished Alumnus, Bilfinger Executive to be UH Cullen College Fall 2018 Commencement Speaker

Terrance “Terri” Ivers, P.E. (BSME ’80) is the fall 2018 UH Cullen College of Engineering commencement speaker.

Terrance “Terri” Ivers, P.E. (BSME ’80), is coming home to the UH Cullen College of Engineering as the featured speaker at its commencement on Dec. 13 at the NRG Arena. He received his Bachelor of Science degree in mechanical engineering from UH in 1980 and has remained involved in the Cullen College community throughout the course of his 37 year-long career.

Establishing Immunotherapy For Pediatric Liver Cancer

One of the most common forms of liver cancer in adolescents is hepatocellular carcinoma in which patient survival rates are under 30 percent. Photo courtesy: GettyImages

T-Cell Editor Creating Powerful Immunotherapy Weapon


As part of a $6 million effort to establish new therapies for high-risk pediatric liver cancer, Navin Varadarajan, associate professor of chemical and biomolecular engineering at the Cullen College of Engineering, will modify T cells to recognize and kill glypican-3, a molecule found in liver cancer cells.