University of Houston Cullen College of Engineering


Professor Develops Stronger Material for Spacecraft Construction


Elena Watts
Image courtesy of NASA

In the absence of materials that could withstand extreme heat generated by high speeds upon reentry to Earth’s atmosphere, engineers have designed blunt-edged spacecraft to slow their speeds and to thermally protect their structures as they returned from space.

With part of a $1.7 million grant from the U.S. Air Force, Ken White, UH professor of mechanical engineering, has developed a new ceramic refractory material, a diboride-tungsten carbide solid solution alloy, to replace zirconium diboride in aircraft and spacecraft construction.  The superior material will enable engineers to design aerodynamic new-generation reentry spacecraft and hypersonic aircraft that will withstand extremely high temperatures under load with improved maneuverability.

Before White and his students could begin their research, they had to invent the experimental methods necessary to study creep, or deformation of material under load at high temperatures.

“It was a unique experiment that no one had ever done before, so we had to come up with all the ways to do it,” White said.

With image analysis software, White observed and tracked zirconium diboride grains under load at 1800 degrees Celsius in a specially equipped furnace, which provided the vacuum environment necessary to avoid corrosion that would otherwise eat away the surface of the material. He observed that the shapes and sizes of the grains were relatively unchanged but that the grains slid across each other without creating cavities. White attributed the majority of the creep to this movement.

While the core of the grains remained rigid, he discovered a mechanism present in the narrow perimeter, or mantle, of the individual grains that was responsible for unlocking the grain-sliding deformation. He removed silicon carbide from the zirconium lattice and added tungsten, another heavy refractory element, to make deformation more difficult in the mantle. As a result, the mantles became more rigid, and the creep slowed 100 times the original rate of creep. White and his students are in the process of laying groundwork, such as additional creep modeling and development of the appropriate phase diagram that maps tungsten solid solution’s microstructure.

“Determining the mechanism that causes creep was our most important accomplishment,” White said. “No one understood what allowed the material to deform.”



Related News Stories

Texas Veteran Achieves Dreams of Space and Engineering

Texas veteran Dwight Theriot lands his dream job at NASA with the help of a UH mechanical engineering degree.

Meet Dwight Theriot, UH Cullen College 2018-2019 Outstanding Senior


2018-2019 Cullen College Outstanding Senior
Dwight Theriot
Graduation Year: 2018
Major: Mechanical Engineering
GPA: 3.84

Dwight Theriot, a decorated U.S. Army veteran, discovered his passion for engineering by accident while serving as an intelligence and security officer in Iraq in 2009.

UH Research Breakthrough Lands Journal Cover

UH engineers land on the cover of the journal Progress in Photovoltaics: Research and Applications.

Flexible, Low-Cost Solar Cell Device Key to Affordable Energy

The journal Progress in Photovoltaics: Research and Applications featured an article on the collaborative work of two UH Cullen College of Engineering research groups on its cover in January.