General Information

Mail: University of Houston
Cullen College of Engineering
E421 Engineering Bldg 2, 4722 Calhoun Rd, Houston, TX 77204-4007
Map & Driving Directions (includes parking information)
Email: info [at] egr [dot] uh [dot] edu

CULLEN COLLEGE OF ENGINEERING

University of Houston Cullen College of Engineering

News

Water Splitting Nanoparticles Featured In Nature Nanotechnology

Printer-friendly versionSend by emailPDF version

By: 

Toby Weber
Bao at work in his lab.
Bao at work in his lab.

Sunlight and water are plentiful and cheap, especially when compared to resources like petroleum. That’s why a recent finding by Jiming Bao, his group and collaborators is so important.

Bao is an assistant professor of electrical and computer engineering with the University of Houston Cullen College of Engineering. In the latest issue of Nature Nanotechnology, he outlines his work with nanoparticles that can efficiently split water into hydrogen and oxygen. Simply disperse them in water then expose them to sunlight. Since hydrogen itself is a clean and efficient fuel – whether burned or used in fuel cells to generate electricity – such a finding could drastically alter the energy landscape.

“Sunlight is the most abundant energy,” said Bao. “If you can combine water and sunlight to make hydrogen then you can solve the energy problem.”

Bao’s nanoparitcles are made of cobalt monoxide and measure just five to 10 billionths of a meter in size. Particles larger than this won’t split water, said Bao, but at the nanoscale, the material’s electrochemical properties change.

Specifically, cobalt monoxide’s band edge position – essentially, the property that determines its ability to add or remove electrons from water molecules – shifts. When light hits a nanoparticle, it creates electrons as well as holes, which are spaces where an electron should be. The electrons move to the particle surface, and convert water to hydrogen. Specifically, electrons are transferred to positively charged hydrogen ions, which reduce them to H2 molecules.

At the same time, the holes combine with the electrons in leftover hydroxide ions (one hydrogen and one oxygen along with an extra electron), generating O2 and H2. The combination allows the second hydrogen atom to split off from the oxygen.

Water splitting materials, Bao said, are not unheard of. What makes this so important is how much hydrogen these particles generate in comparison: up to 50-times more than existing catalysts. That’s the type of figure that can alter the energy industry’s landscape.

But there is one major drawback to these particles that will prevent them from having an immediate impact: they only work for an hour. After that, their ability to split water drops rapidly. From a logistical standpoint, this makes them impractical to use on a commercial scale.

Still, the finding proves that highly efficient water splitting is possible. That alone is a major advance. “We’ve shown it’s possible to do energy conversion at such high efficiency,” said Bao. “The next step is to engineer the material to increase its lifetime. Now we have to come up with ways to regenerate it or redesign it so it will last longer.”

Faculty: 

Department: 

Tag: 

Related News Stories

Rotating and Aligning Graphene Flakes – A UH Engineer's Discovery Opens Doors to Progress

Associate Professor Jiming Bao and screen filled with graphene flakes suspended in solvent between two layers of glass. Bao discovered that a magnet rotates and aligns the flakes.

In 2010 graphene took center stage when the Nobel Prize in Physics was awarded to two scientists in the UK "for groundbreaking experiments regarding the two-dimensional material graphene." At the UH Cullen College of Engineering, that same passion over pencil lead is shared by Jiming Bao, associate professor of electrical and computer engineering, but he’s taken it to a whole new dimension,

PHOTOS: H. David Hibbitt Rockwell Lecture

Computer simulation software allows engineers to predict how certain materials will perform under specific – and often extreme – conditions. For instance, major advances in aerospace and flight were made possible due to engineering simulation based on computational solid mechanics, leading to pioneering work conducted by the company Boeing.

The Media Comes Calling: Excitement Over Invention That Turns Smartphone into a Microscope

Electrical and computer engineering Associate Professor Wei-Chuan Shih and his DotLens technology

An invention by a University of Houston engineer that turns your smartphone into a microscope, allowing it to detect whether your pond water is healthy, is getting attention in the media. Houston’s CBS affiliate, KHOU-TV Channel 11 aired a story about the invention of the DotLens, which came to life in the laboratory of electrical and computer engineering Associate Professor Wei-Chuan Shih.