CULLEN COLLEGE OF ENGINEERING

University of Houston Cullen College of Engineering

News

Bao Wins NSF CAREER Award to Study Graphene’s Optical Properties

By: 

Toby Weber
Bao
Bao

Jiming Bao, assistant professor of electrical and computer engineering, has won a National Science Foundation CAREER Award to study the optical properties of graphene.

One of the most prestigious grants offered by the NSF, CAREER awards are designed to help junior-level faculty build their research programs and establish a track record of successful investigations. Bao’s grant, for $400,000 over five years, will allow him to examine the optical properties of graphene, one-atom-thick sheets of carbon.

Electromagnetic wave simulations have shown that graphene has the ability to act as an optical waveguide for surface plasmon, essentially serving as a pathway along which these electromagnetic waves can travel.

This property has not been well established through real world experimentation, however. By creating sheets of graphene and then etching nano-scale features into the material, Bao aims to confirm its ability to conduct surface plasmon and characterize how well different types of graphene nanoribbons perform this task.

If Bao is able create and observe graphene with good optical waveguide properties, nanoribbons of the material could serve as optical interconnects in electronic devices, improving computing speed.

“If you want to send a message from one transistor to another, right now you have to use copper wire,” said Bao. “That’s a low frequency electrical signal. Surface plasmon has a higher frequency. So the bandwidth will increase a lot, making the information transmission rate much higher than copper.”

What’s more, establishing the plasmon-related properties of the material could allow researchers to use it for molecular sensing, said Bao. By creating graphene nanodisks with strong localized surface plasmon resonances and attaching them to molecules, changes in how the plasmon behaves on these particles would signal that molecular bonding has occurred.

While all this is promising, Bao stressed that utilizing graphene in these ways is dependent upon him achieving his first goal: confirming the ability of graphene to confine surface plasmon. “You need to first demonstrate surface plasmon on graphene and observe its optical properties. You can see it in simulations, but you must find ways to observe it in the lab,” he said.

Faculty: 

Department: 

Tag: 

Related News Stories

Researchers Report High Performance Solid-State Sodium-Ion Battery

ORGANIC CATHODE OFFERS MORE RELIABLE CONTACT WITH ELECTROLYTE, A KEY TO STABILITY

Solid-state sodium-ion batteries are far safer than conventional lithium-ion batteries, which pose a risk of fire and explosions, but their performance has been too weak to offset the safety advantages. Researchers Friday reported developing an organic cathode that dramatically improves both stability and energy density.

Could Robots Make a Documentary about a 5K Race?

Students are building a robotic car capable of traveling up to 10 mph as part of the project.

UH-Led Project Focuses on Training Robots to Observe and Make Decisions

 

A 5K race can offer both victory and heartbreak, but capturing those moments on video requires both planning ahead and making on-the-spot decisions about where the camera operators should be.

UH Honors Cullen College Professors With Awards

Yi-Lung Mo, professor of civil and environmental engineering at the UH Cullen College of Engineering, won a prestigious 2019 John and Rebecca Moores Professorship.

Yi-Lung Mo Wins Prestigious John and Rebecca Moores Professorship

 

Each spring, the University of Houston recognizes the best and brightest faculty members, honoring them with teaching and research awards. This year four members of the Cullen College of Engineering community earned distinctions. Read more about them below: