General Information

Mail: University of Houston
Cullen College of Engineering
E421 Engineering Bldg 2, 4722 Calhoun Rd, Houston, TX 77204-4007
Map & Driving Directions (includes parking information)
Email: info [at] egr [dot] uh [dot] edu

CULLEN COLLEGE OF ENGINEERING

University of Houston Cullen College of Engineering

News

Professor Wins Grant from Semiconductor Giant

Printer-friendly versionSend by emailPDF version

By: 

Toby Weber
Brankovic
Brankovic

National Semiconductor, the world’s largest maker of analog circuits, has given $160,000 to a Cullen College of Engineering professor to develop new metal alloys for possible use in devices that require top-notch reliability.

The grant to Stanko Brankovic, an assistant professor of electrical and computer engineering, will be used to support two graduate students and to design and build an entirely new machine for testing the properties of these alloys.

The alloys Brankovic will create will be comprised primarily of cobalt, iron and nickel. Such alloys are typically easy to mass-produce and have a good ability to withstand physical stress. Most importantly, they are good conductors of magnetic fields. Magnetism is at the heart of mechanical switches used in many applications that require 100% reliability, such as medical devices and satellites. These alloys, therefore, could be extremely useful in these critical situations.

Such alloys, though, too easily conduct the electricity created by magnetic fields. As a result, when the electrical current gets too high, the alloys themselves are damaged, leading to device failure.

Brankovic, then, will introduce an additional element, such as titanium or boron, into these alloys in very small amounts (less than one percent of the total). In doing so, he will attempt to walk a fine line.

“Let’s say you design a material that has magnetic properties you’re happy with,” said Brankovic. “The idea is to play the game, adding the minimum amount possible of the fourth element in order to significantly reduce the alloy’s conductivity without sacrificing its other properties.”

While adding a fourth element to these alloys has already been proven to increase their resistance to electrical current, how the addition impacts the alloy’s magnetic properties is not well known.

In order to reveal this information, Brankovic and his research team will build a new machine that uses infrared sensors to test the properties of various alloys as they are created.

What’s more, by analyzing data from these tests, Brankovic will seek to reveal not only the properties of these alloys, but the fundamental mechanisms behind those properties. In short, this research will show why these alloys have certain characteristics and give scientists a blueprint for creating new materials in the future.

“We’re basically entering this field where things are unknown,” said Brankovic. “We want to quantify this effect, perhaps develop some analytical models. But we also want to do the practical research, which means we want to develop fully functional alloys that could be immediately applied in commercial devices.”

Faculty: 

Department: 

Related News Stories

Rotating and Aligning Graphene Flakes – A UH Engineer's Discovery Opens Doors to Progress

Associate Professor Jiming Bao and screen filled with graphene flakes suspended in solvent between two layers of glass. Bao discovered that a magnet rotates and aligns the flakes.

In 2010 graphene took center stage when the Nobel Prize in Physics was awarded to two scientists in the UK "for groundbreaking experiments regarding the two-dimensional material graphene." At the UH Cullen College of Engineering, that same passion over pencil lead is shared by Jiming Bao, associate professor of electrical and computer engineering, but he’s taken it to a whole new dimension,

PHOTOS: H. David Hibbitt Rockwell Lecture

Computer simulation software allows engineers to predict how certain materials will perform under specific – and often extreme – conditions. For instance, major advances in aerospace and flight were made possible due to engineering simulation based on computational solid mechanics, leading to pioneering work conducted by the company Boeing.