CULLEN COLLEGE OF ENGINEERING

University of Houston Cullen College of Engineering

News

Award Allows Engineers to Pursue Technique for Assessing Systemic Sclerosis

Printer-friendly versionSend by emailPDF version

By: 

Elena Watts

Two professors at the UH Cullen College of Engineering earned a $200,000 Peer Reviewed Medical Research Program (PRMRP) Discovery Award from the U.S. Department of Defense to further explore a quantitative assessment technique for systemic sclerosis (SSc). The autoimmune disorder is characterized by thickening of soft tissues in the body caused by accumulations of collagen. 

Chandra Mohan, the Hugh Roy and Lillie Cranz Cullen endowed professor of biomedical engineering, and Kirill Larin, professor and director of the graduate biomedical engineering program, have developed a novel non-invasive technique to assess elasticity of body tissues in mice and, eventually, humans. The technology, called phase-stabilized swept source optical coherence elastography (PhS-SSOCE), is allowing to image tissues with micrometer spatial resolution and sense nanometer-amplitude displacements.

“When not diagnosed and treated early, systemic sclerosis can be dangerous, and even fatal, attacking internal tissues such as breathing passageways, lungs, and the renal and intestinal tracts,” Mohan said. “We have shown that our method is capable of early detection of thickened skin in mice, and our idea now is to further explore ways to objectively assess degrees of disease involvement.”

Currently, levels of tissue thickness assessed in clinics are relatively subjective with the Rodnan total skin score, the gold standard that measures multiple sites on the body and tallies a score that typically varies from one physician to the next. Technologies such as magnetic resonance imaging and ultrasound have also been tested with varying levels of success.

“We need to produce a metric to accurately diagnose and stage the disease based on mechanical and optical properties of the skin,” Larin said. “The current methods are not capable of objectively assessing progression of the disease or the patient responses to therapies.”

With the developed technology, Mohan and Larin have successfully applied a quantitative method in vivo and in vitro for determining elasticity changes caused by SSc in the skin of mice. Their next objective is to assess and monitor skin elasticity of mice with SSc using the new technique over time and to compare those results to assessments of skin elasticity in mice with SSc using the traditional skin score method. They intend to begin with straightforward skin lesions before they tackle more difficult assessments of internal organs using minimally invasive probes.

Their goal is to extend the research to patients with systemic sclerosis, in collaboration with Dr. Shervin Assassi, associate professor of rheumatology at UT Health Science Center in Houston, who is also a lead investigator on this grant. He plans to perform cross-sectional analyses of skin samples from patients with and without SSc using both novel PhS-SSOCE and traditional Rodan total skin score assessment methods. After they prove the feasibility of their research, they could potentially extend the use of this novel technology to other skin and autoimmune diseases.

Faculty: 

Department: 

Tag: 

Related News Stories

UH Alumnus Appointed Chair of Engineering Department of Turkish University

Hasan Onur Keles, a UH BME alumnus, appointed chair of the electrical and electronic engineering department at Istinye University in Istanbul.

An engineering connection spanning continents and countries

 

Cullen College of Engineering alumnus Hasan Onur Keles (BME 2015) was recently appointed chair of the electrical and electronic engineering department at Istinye University in Istanbul. He also serves as an assistant professor in the department.

UH Student’s Poster Places at Neuromodulation Symposium

Musa Ozturk, a UH graduate student, stands in front of the award-winning poster with Jianping Wu, senior principal scientist at Medtronic and co-author of the study.

Research proposes computer-based assessment of Parkinson’s patients more reliable

 

Musa Ozturk, a Ph.D. student in biomedical engineering at the UH Cullen College of Engineering, presented a poster at the Neuromodulation Symposium at the University of Minnesota and won second place out of 120 presentations.

Mission: Possible — Mapping Dangerous Terrain

UH researchers are testing prototypes for the project in Brays Bayou.

UH Engineers Focus on Degradable Reconnaissance Vehicles and Evasive Drone Maneuvers

 

Ensuring military forces have up-to-date information about a potentially hostile region offers obvious advantages, but current methods for doing that – especially along shorelines, where underwater mines and other hazards can pose serious risks – all have drawbacks. It is especially difficult if keeping the technology out of enemy hands is a priority.

Upcoming Events / Seminars