General Information

Mail: University of Houston
Cullen College of Engineering
E421 Engineering Bldg 2, 4722 Calhoun Rd, Houston, TX 77204-4007
Map & Driving Directions (includes parking information)
Email: info [at] egr [dot] uh [dot] edu

CULLEN COLLEGE OF ENGINEERING

University of Houston Cullen College of Engineering

News

UH-led Team Receives $3.1 Million DOE Award to Develop Superconducting Wire for Wind Turbines

Printer-friendly versionSend by emailPDF version
Selva
Selva

The University of Houston will lead a public-private research team that has been awarded $3.1 million by the U.S. Department of Energy (DOE) to develop a low-cost superconducting wire that could be used to power future wind turbines. This support is part of the DOE’s Advanced Research Projects Agency-Energy (ARPA-E) program, which recently announced it has awarded $156 million to 60 cutting-edge research projects designed to improve how the U.S. produces and uses energy. Venkat “Selva” Selvamanickam, M.D. Anderson Chair Professor of Mechanical Engineering, director of the Applied Research Hub of the Texas Center for Superconductivity at the University of Houston (TcSUH) and Chief Technology Advisor for SuperPower, will lead the research project.

Full Story

Faculty: 

Department: 

Related News Stories

Artificial ‘Skin’ Gives Robotic Hand a Sense of Touch

UH Researchers Discover New Form of Stretchable Electronics, Sensors and Skins

A team of researchers from the University of Houston has reported a breakthrough in stretchable electronics that can serve as an artificial skin, allowing a robotic hand to sense the difference between hot and cold, while also offering advantages for a wide range of biomedical devices.

Breakthrough in Dissolving Electronics Holds Promise for Biomedicine

Cunjiang Yu, Bill D. Cook Assistant Professor of mechanical engineering, center, and co-first authors Xu Wang, left, and Kyoseung Sim, right)

Discovery Has Applications for Eco-Friendly Disposal, Data Security and Healthcare

Researchers from the University of Houston and China have reported a new type of electronic device that can be triggered to dissolve through exposure to water molecules in the atmosphere.