CULLEN COLLEGE OF ENGINEERING

University of Houston Cullen College of Engineering

News

Diesel Center Researchers Earn EPA Grant to Retrofit School Buses

Printer-friendly versionSend by emailPDF version

By: 

Erin D. McKenzie
Muncrief
Muncrief

Using a $1 million grant from the U.S. Environmental Protection Agency, the Texas Diesel Testing and Research Center at the University of Houston will retrofit school buses with a system that attempts to diminish the negative impact their diesel emissions can have on the environment.

UH researchers will supervise the installation of Nett Technologies’ BlueMAX Selective Catalytic Reduction System on 10 area buses. Then, over the course of the next two years, they will analyze the system’s ability to reduce smog-causing Nitrogen Oxides (NOx) and sooty particles being released through emissions using a series of real-world tests.

“Retrofits are a cheaper alternative to completely replacing dirty diesel engines that contribute to non-attainment areas, such as Houston, being unable to meet air quality requirements,” said Rachel Muncrief, the lead investigator on the grant and a research assistant professor of chemical and biomolecular engineering at UH. “The EPA is responsible for verifying the efficiency of retrofits before giving their approval for them to be utilized to get emissions credits. In-use testing projects such as these are an important part of the EPA’s decision-making process when evaluating whether a technology should be verified.”

Evaluating retrofit devices has been a focus of UH’s diesel center since its 2003 start. The EPA will use their data on this emerging technology, set to be verified next month, to determine whether its scope of verification can be expanded, said M.A. Mannan, business manager for Nett Technologies.

“This testing could allow more engines and types of vehicles to be included in our verification,” said Mannan from the company’s Ontario, Canada headquarters. The diesel center is already in the process of testing five non-road construction vehicles using the same NETT system.

Just as they initially did with the off-road construction vehicles, researchers will conduct a series of baseline tests to determine the level of pollution created by the buses prior to retrofitting. Once complete, the system will be installed.

It is designed to convert NOx not only into water, but nitrogen gas—a naturally occurring substance in the air we breathe—by adding a reductant, in this case urea, to the exhaust stream. Sensors measure the amount of NOx present in the exhaust stream and determine the quantity of urea needed to produce a chemical reaction that reduces the NOx as it passes over the catalyst, thus releasing a smaller amount of toxins into the environment.

At least twice during the study, they will conduct on-road tests using their portable emission measurement system as well as hook the buses up to their chassis dynamometer. This kind of treadmill for vehicles will allow researchers to measure emissions in house. Both tests will help them to determine just how close the system can come to reducing NOx as well as particulate matter and other pollutants produced by the buses.

“Houston has a high population density, poor air quality and is in an ozone non-attainment area due, in large part, to the significant amount of NOx emitted by diesel powered vehicles and equipment,” Muncrief said. ”Retrofits have the potential to significantly reduce the total annual NOx emissions in the area.”

Muncrief will work with diesel researchers Michael Harold, professor of chemical and biomolecular engineering, and Charles Rooks, director of the diesel center, on the project.

Faculty: 

Department: 

Centers/Programs: 

Tag: 

Related News Stories

UH Engineering Professor Warns of the Dangers of Defunding the Chemical Safety Board in Forbes

The explosion and fire at the Arkema chemical plant in Crosby, TX was part of the cost of Hurricane Harvey. Photo Credit: Terry Hammonds

President Trump’s budget for the next fiscal year proposes a number of cuts, including defunding the U.S. Chemical Safety Board (USCSB). The non-partisan, independent body assesses chemical accidents — such as the West Fertilizer Co. explosion in 2013 and the Arkema plant explosion after Hurricane Harvey in 2017 — and recommends better practices for the industry.

UH Cullen College Recognizes Outstanding Students

Megan Goh, Cullen College of Engineering Outstanding Senior for 2017-18

Every academic year, the University of Houston’s Cullen College of Engineering celebrates student academic achievement by choosing an Outstanding Senior and an Outstanding Junior. Not only do the chosen represent hard work and dedication, but also passion and intellectual curiosity. They serve to inspire.

For 2017-2018, the two students are: Biomedical engineering senior Megan Goh and chemical engineering junior Christine Stroh.

These are their stories.

 

Top Companies Recruit UH Engineers at Fall Career Fair

Students at the UH Cullen College of Engineering aren't just expected to do well in their labs and classes -- engineering students are expected to work in their respective fields of study while pursuing their degrees in order to land their dream jobs after college. That's why the Cullen College's Career Center offers two Engineering Career Fairs each year, one in the spring and one in the fall, to connect students to the top employers around the country early on in their academic careers.